Chapter 5: Relations

8.1 Relations and Their Properties

Binary relations:

- Let A and B be any two sets.
- A binary relation R from A to B, written $R: A \rightarrow B$,

is a subset of the Cartesian product A×B.

- The notation a R b means $(a, b) \in R$.
- The notation $a \not R b$ means $(a, b) \notin R$.
- If a R b we may say that a is related to b (by relation R), or a relates to b (under relation R).

Example

Let $R : A \rightarrow B$, and $A = \{1, 2, 3\}$ represents students, $B = \{a, b\}$ represents courses. $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}.$ If $R = \{(1, a), (1, b)\}$, it means that student 1 registered in courses a and b

Relations can be Represented by:

Let A be the set {1, 2, 3, 4} for which ordered pairs are in the relation

 $R = \{(a, b) \mid a \text{ divides } b\}$

A- Roaster Notation: List of ordered pairs: $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}$

B- Set builder notation: $R = \{(a, b) : a \text{ divides } b\}$

Relations can be Represented by:

C- Graph:

 $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}$

Relations can be Represented by:

D- Table:

 $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)\}$

R	1	2	3	4
1	×	×	×	×
2		×		×
3			×	
4				×

Relations on a Set

 A (binary) relation from a set A to itself is called a relation on the set A.

e.g. The "<" relation defined as a relation on the set **N** of natural numbers: let $\langle : \mathbf{N} \rightarrow \mathbf{N} :\equiv \{(a, b) \mid a < b\}$ If $(a, b) \in R$ then a < b means $(a, b) \in \langle$

e.g. $(1, 2) \in <$.

Relations on a Set

• The **identity relation** I_A on a set A is the set $\{(a, a) \mid a \in A\}$.

e.g. If $A = \{1, 2, 3, 4\}$, then $I_A = \{(1, 1), (2, 2), (3, 3), (4, 4)\}$.

Relations on a Set

Examples:

$$R_1 = \{(a, b) \mid a \le b\}$$

$$R_2 = \{(a, b) \mid a = b \text{ or } a = -b\}$$

$$R_3 = \{(a, b) \mid a + b \le 3\}$$

Which of these relations contain each of the following pairs (1, 1), (1, 2), (1, -1)?

(1, 1) is in
$$R_1$$
, R_2 , R_3
(1, 2) is in R_1 , R_3
(1, -1) is in R_2 , R_3

Question

How many relations are there on a set with *n* elements?

Answer:

- 1. A relation on set A is a subset from $A \times A$.
- 2. A has *n* elements so $A \times A$ has n^2 elements.
- 3. Number of subsets for n^2 elements is 2^{n^2} , thus there are 2^{n^2} relations on a set with *n* elements.

e.g. If $S = \{a, b, c\}$, there are $2^{3^2} = 2^9 = 512$ relations.

Properties of Relations 1. Reflexivity and Irreflexivity

A relation R on A is **reflexive** if $(a, a) \in R$ for every element $a \in A$.

e.g. Consider the following relations on {1, 2, 3, 4} $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$ Not Reflexive. $R_2 = \{(1, 1), (2, 1), (2, 2), (3, 3), (3, 4), (4, 4)\},$ Reflexive. $R_3 = \{(a, b) \mid a \le b\},$ Reflexive.

Reflexivity and Irreflexivity

A relation *R* on *A* is **irreflexive** if for every element $a \in A$, $(a, a) \notin R$.

Note: "irreflexive" ≠ "not reflexive".

e.g. If $A = \{1, 2\}, R = \{(1, 2), (2, 1), (1, 1)\}$ is not reflexive because $(2, 2) \notin R$, not irrflexive because $(1, 1) \in R$.

Example

Examples

2. Symmetry and Antisymmetry

- A binary relation R on A is **symmetric** if $(a, b) \in R \leftrightarrow (b, a) \in R$, where $a, b \in A$.
- A binary relation R on A is **antisymmetric** if $(a, b) \in R \rightarrow (b, a) \notin R$. That is, if $(a, b) \in R \land (b, a) \in R \rightarrow a = b$.

Examples

Consider these relations on the set of integers: $R_1 = \{(a, b) \mid a = b\}$ Symmetric , antisymmetric. $R_2 = \{(a, b) \mid a > b\},$ Not symmetric, antisymmetric. $R_3 = \{(a, b) \mid a = b + 1\},$ Not symmetric, antisymmetric.

Examples

Let $A = \{1, 2, 3\}.$

$R_1 = \{(1, 2), (2, 2), (3, 1), (1, 3)\}$	Not reflexive, not irreflexive, not symmetric, not antisymmetric
$R_2 = \{(2, 2), (1, 3), (3, 2)\}$	Not reflexive, not irreflexive, not symmetric, antisymmetric
$R_3 = \{(1, 1), (2, 2), (3, 3)\}$	Reflexive, not irreflexive, symmetric, antisymmetric
$R_4 = \{(2, 3)\}$	Not reflexive, irreflexive, not symmetric, antisymmetric

3. Transitivity

A relation R is said to be transitive if and only if (for all a, b, c),
 (a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R.

e.g. Let
$$A = \{1, 2\}$$
.
 $R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ is transitive.
 $R_2 = \{(1, 1), (1, 2), (2, 1)\}$ is not transitive, $(2, 2) \notin R_2$.
 $R_3 = \{(3, 4)\}$ is transitive.

Combining Relations

Let
$$A = \{1, 2, 3\}$$
, $B = \{1, 2, 3, 4\}$,
 $R_1 = \{(1, 1), (2, 2), (3, 3)\}$,
 $R_2 = \{(1, 1), (1, 2), (1, 3), (1, 4)\}$, then
 $R_1 \cup R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (1, 4)\}$
 $R_1 \cap R_2 = \{(1, 1)\}$
 $R_1 - R_2 = \{(2, 2), (3, 3)\}$

Composite Relations

- If (a, c) is in R_1 and (c, b) is in R_2 then (a, b) is in $R_2 \circ R_1$.
- e.g. *R* is the relation from {1, 2, 3} to {1, 2, 3, 4} $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}.$ *S* is the relation from {1, 2, 3, 4} to {0, 1, 2} $S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\}.$ $S \circ R = \{(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)\}.$

8.3 Representing Relations

Some special ways to represent binary relations:
 With a zero-one matrix.
 With a directed graph.

Using Zero-One Matrices

To represent a relation R by a matrix $M_R = [m_{ii}]$, let $m_{ii} = 1$ if $(a_i, b_j) \in R$, otherwise 0. Let $A = \{1, 2, 3\}$, $B = \{1, 2\}$, $R : A \rightarrow B$ such that: $R = \{(2, 1), (3, 1), (3, 2)\}$ then the matrix for R is: 1 0 0 2 1 0 3 1 1 $M_{R} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$

Zero-One Reflexive, Symmetric

The terms: Reflexive, non-reflexive, irreflexive, symmetric and antisymmetric.

 These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Example

Is *R* reflexive, symmetric, antisymmetric?

$$M_{R} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Reflexive, symmetric, not antisymmetric

Operations

1- Union and the Intersection

The Boolean Operations join \lor and meet \land can be used to find the matrices representing the union and the intersection of two relations

$$M_{R_1 \cup R_2} = M_{R_1} \lor M_{R_2}$$
$$M_{R_1 \cap R_2} = M_{R_1} \land M_{R_2}$$

Example

Suppose R_1 and R_2 are relations on a set A which are represented by the matrices:

$$M_{R_{1}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
$$M_{R_{1} \cup R_{2}} = M_{R_{1}} \lor M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix},$$
$$M_{R_{1} \cap R_{2}} = M_{R_{1}} \land M_{R_{2}} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Operations

2- Composite Suppose that $R: A \leftrightarrow B$, $S: B \leftrightarrow C$ (Boolean Product) $M_{S \circ R} = M_R \Theta M_S$

Example

Let

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ and } M_{S} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$
Find the matrix of $S \circ R$?

$$M_{S \circ R} = M_{R} \Theta M_{S} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

Using Directed Graphs

Reflexive (bcz: (1,1), (2,3),(3,3) \in R) Symmetric ((2,3),(3,2) R, (1,3),(3,1) \in R) Not Ant symmetric ((2,3),(3,2) \in R) Not Transitive ((1,3),(3,2) \in R but (1,2) \in R)

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive, irreflexive, symmetric, antisymmetric properties by graph inspection.

Reflexive:IrEvery nodeIhas a self-looplin

Irreflexive: No node links to itself

Not symmetric, non-antisymmetric

Symmetric: Every link is bidirectional Antisymmetric: No link is bidirectional

Non-reflexive, non-irreflexive