
Chapter 5: Relations



8.1 Relations and Their Properties

Binary relations:

• Let A and B be any two sets.

• A binary relation R from A to B, written

R : A   B,

is a subset of the Cartesian product A×B.  

• The notation a R b means (a, b)  R.

• The notation a R b means (a, b)  R.

• If a R b we may say that a is related to b (by

relation R ), or a relates to b (under relation R ).



Example

Let R : A  B, and 

A = {1, 2, 3} represents students,

B = {a, b} represents courses.

A×B = { (1, a), (1, b), (2, a), (2, b), (3, a), (3, b)}.

If R = {(1, a), (1, b)}, it means that student 1

registered in courses a and b



Relations can be Represented by:

Let A be the set {1, 2, 3, 4} for which ordered pairs

are in the relation

R = {(a, b) | a divides b}

A- Roaster Notation: List of ordered pairs:

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)}

B- Set builder notation:

R = {(a, b) : a divides b}



C- Graph:

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)}

1 1

2 2

3 3

4 4

1       2       3       4OR

Relations can be Represented by:

Domain of R



D- Table:

R = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (1, 3), (1, 4), (2, 4)}

R 1 2 3 4

1 × × × ×

2 × ×

3 ×

4 ×

Relations can be Represented by:



Relations on a Set

• A (binary) relation from a set A to itself is called

a relation on the set A.

e.g. The “<” relation defined as a relation on the

set N of natural numbers:

let  < : N  N :≡  {(a, b) | a < b }

If  (a, b)  R  then a < b means (a, b)  <

e.g.  (1, 2)  < .



Relations on a Set

• The identity relation IA on a set A is the set  

{(a, a) | a  A}.

e.g. If  A = {1, 2, 3, 4}, 

then IA  = {(1, 1), (2, 2), (3, 3), (4, 4)}.



Examples:

R1 = {(a, b) | a ≤ b}

R2 = {(a, b) | a = b or  a = -b}

R3 = {(a, b) | a + b ≤ 3}

Which of these relations contain each of the
following pairs (1, 1), (1, 2), (1, -1)?

(1, 1) is in R1, R2, R3

(1, 2) is in R1, R3

(1, -1) is in R2, R3

Relations on a Set



Question

How many relations are there on a set with n

elements?

Answer:

1. A relation on set A is a subset from A×A.

2. A has n elements so A×A has n2 elements.

3. Number of subsets for n2 elements is , thus

there are relations on a set with n elements.

e.g. If S = {a, b, c}, there are                      relations.

2

2n

2

2n

51222 932





Properties of Relations

1. Reflexivity and Irreflexivity

A relation R on A is reflexive if (a, a)  R for every

element a  A.

e.g. Consider the following relations on {1, 2, 3, 4}

R1 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)},

Not Reflexive.

R2 = {(1, 1), (2, 1), (2, 2), (3, 3), (3, 4), (4, 4)},

Reflexive.

R3 = {(a, b) | a ≤ b},

Reflexive.



A relation R on A is irreflexive if for every element

a  A, (a, a)  R.

Note: “irreflexive” ≠ “not reflexive”.

e.g. If A = {1, 2}, R = {(1, 2), (2, 1), (1, 1)} is

not reflexive because (2, 2)  R,

not irrflexive because (1, 1)  R.

Reflexivity and Irreflexivity



1            2

3            4

Not Reflexive and Not Irreflexive

Example



1          2                   1         2

3          4                   3         4

Irreflexive                  Reflexive

Examples



2. Symmetry and Antisymmetry

• A binary relation R on A is symmetric if

(a, b)  R ↔ (b, a)  R, where a, b  A.

• A binary relation R on A is antisymmetric if 

(a, b)  R → (b, a)  R.

That is, if (a, b)  R   (b, a)  R  → a = b.



Examples

Consider these relations on the set of integers:

R1 = {(a, b) | a = b}  

Symmetric , antisymmetric.

R2 = {(a, b) | a > b}, 

Not symmetric, antisymmetric.

R3 = {(a, b) | a = b + 1},

Not symmetric, antisymmetric.



Examples

Let  A = {1, 2, 3}.

R1 = {(1, 2), (2, 2), (3, 1), (1, 3)}
Not reflexive, not irreflexive, not 

symmetric, not antisymmetric

R2 = {(2, 2), (1, 3), (3, 2)}
Not reflexive, not irreflexive, not 

symmetric, antisymmetric

R3 = {(1, 1), (2, 2), (3, 3)} 
Reflexive, not irreflexive, 

symmetric, antisymmetric

R4 = {(2, 3)}
Not reflexive, irreflexive, not 

symmetric, antisymmetric



3. Transitivity

• A relation R is said to be transitive if and only if

(for all a, b, c),

(a, b)  R  (b, c)  R → (a, c)  R.

e.g. Let A = {1, 2}.

R1 = {(1, 1), (1, 2), (2, 1), (2, 2)}  is transitive.

R2 = {(1, 1), (1, 2), (2, 1)}  is not transitive, (2, 2) R2.

R3 = {(3, 4)}  is transitive.



Combining Relations

Let A = {1, 2, 3} , B = {1, 2, 3, 4},

R1 = {(1, 1), (2, 2), (3, 3)},

R2 = {(1, 1), (1, 2), (1, 3), (1, 4)}, then

R1 R2 = {(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (1, 4)}

R1 R2 = {(1, 1)}

R1 − R2 = {(2, 2), (3, 3)}







Composite Relations

• If (a, c) is in R1 and (c, b) is in R2 then (a, b) is in 

R2◦R1 .

e.g.  R is the relation from {1, 2, 3} to {1, 2, 3, 4}  

R = {(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)}.

S is the relation from {1, 2, 3, 4} to {0, 1, 2}

S = {(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)}.

S◦R = {(1, 0), (1, 1), (2, 1), (2, 2), (3, 0), (3, 1)}.



8.3 Representing Relations

• Some special ways to represent binary relations:

– With a zero-one matrix.

– With a directed graph.



To represent a relation R by a matrix  MR = [mij ], let mij = 1 

if (ai , bj)  R, otherwise 0.

Let A = {1, 2, 3} , B = {1, 2} , R : A → B such that:

R = {(2, 1), (3, 1), (3, 2)} then the matrix for R is:

1    2

1

2

3

Using Zero-One Matrices



















1

0

0

1

1

0

R
M

















1

0

0

1

1

0



Zero-One Reflexive, Symmetric

The terms: Reflexive, non-reflexive, irreflexive,

symmetric and antisymmetric.

– These relation characteristics are very easy to

recognize by inspection of the zero-one

matrix.

1 0 1 0

1 0 1 0 1 0 1
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Example

Is R reflexive, symmetric, antisymmetric?

Reflexive, symmetric, not antisymmetric 
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Operations

1- Union and the Intersection 

The Boolean Operations join and meet can

be used to find the matrices representing the

union and the intersection of two relations
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2121

RRRR

RRRR

MMM

MMM








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Example

Suppose R1 and R2 are relations on a set A which are

represented by the matrices:
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2- Composite

Suppose that  R : A ↔ B,  S :  B ↔ C

(Boolean Product)

SRRS MMM 

Operations



Example

Let

Find the matrix of            ?RS 
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Using Directed Graphs

Reflexive ( bcz: (1,1), (2,3),(3,3)  R)

Symmetric ((2,3) ,(3,2)  R , (1,3),(3,1)  R)

Not Ant symmetric ((2,3) ,(3,2)  R)

Not Transitive ( (1,3) ,(3,2)  R 

but (1,2)  R)



Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive,

irreflexive, symmetric, antisymmetric properties by

graph inspection.











Reflexive:

Every node

has a self-loop

Irreflexive:

No node

links to itself

Symmetric:

Every link is

bidirectional

 

Antisymmetric:

No link is

bidirectional

 



Not symmetric, non-antisymmetric Non-reflexive, non-irreflexive


