Chapter 5: Relations

8.1 Relations and Their Properties

Binary relations:

- Let A and B be any two sets.
- A binary relation R from A to B, written

$$
R: A \rightarrow B
$$ is a subset of the Cartesian product $A \times B$.

- The notation $a R b$ means $(a, b) \in R$.
- The notation $a \not R b$ means $(a, b) \in R$.
- If $a R b$ we may say that a is related to b (by relation R), or a relates to b (under relation R).

Example

Let $R: A \rightarrow B$, and
$A=\{1,2,3\}$ represents students,
$B=\{a, b\}$ represents courses.
$A \times B=\{(1, a),(1, b),(2, a),(2, b),(3, a),(3, b)\}$.
If $R=\{(1, a),(1, b)\}$, it means that student 1
registered in courses a and b

Relations can be Represented by:

Let A be the set $\{1,2,3,4\}$ for which ordered pairs are in the relation

$$
R=\{(a, b) \mid a \text { divides } b\}
$$

A- Roaster Notation: List of ordered pairs:

$$
R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}
$$

B- Set builder notation:

$$
R=\{(a, b): \text { a divides } b\}
$$

Relations can be Represented by:

C- Graph:

$$
R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}
$$

Relations can be Represented by:

D- Table:

$$
R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,4)\}
$$

R	1	2	3	4
1	\times	\times	\times	\times
2		\times		\times
3			\times	
4				\times

Relations on a Set

- A (binary) relation from a set A to itself is called a relation on the set A.
e.g. The "<" relation defined as a relation on the set \mathbf{N} of natural numbers:

$$
\begin{aligned}
& \text { let }<: \mathbf{N} \rightarrow \mathbf{N}: \equiv\{(a, b) \mid a<b\} \\
& \text { If }(a, b) \in R \text { then } a<b \text { means }(a, b) \in< \\
& \quad \text { e.g. }(1,2) \in<.
\end{aligned}
$$

Relations on a Set

- The identity relation I_{A} on a set A is the set

$$
\{(a, a) \mid a \in A\}
$$

e.g. If $A=\{1,2,3,4\}$,
then $\boldsymbol{I}_{A}=\{(1,1),(2,2),(3,3),(4,4)\}$.

Relations on a Set

Examples:

$$
\begin{gathered}
R_{1}=\{(a, b) \mid a \leq b\} \\
R_{2}=\{(a, b) \mid a=b \text { or } a=-b\} \\
R_{3}=\{(a, b) \mid a+b \leq 3\}
\end{gathered}
$$

Which of these relations contain each of the following pairs $(1,1),(1,2),(1,-1)$?
$(1,1)$ is in R_{1}, R_{2}, R_{3}
$(1,2)$ is in R_{1}, R_{3}
$(1,-1)$ is in R_{2}, R_{3}

Question

How many relations are there on a set with n elements?

Answer:

1. A relation on set A is a subset from $A \times A$.
2. A has n elements so $A \times A$ has n^{2} elements.
3. Number of subsets for n^{2} elements is $2^{n^{2}}$, thus there are $2^{n^{2}}$ relations on a set with n elements.
e.g. If $S=\{a, b, c\}$, there are $2^{3^{2}}=2^{9}=512$ relations.

Properties of Relations 1. Reflexivity and Irreflexivity

A relation R on A is reflexive if $(a, a) \in R$ for every element $a \in A$.
e.g. Consider the following relations on $\{1,2,3,4\}$

$$
\begin{gathered}
R_{1}=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}, \\
\text { Not Reflexive. } \\
R_{2}=\{(1,1),(2,1),(2,2),(3,3),(3,4),(4,4)\},
\end{gathered}
$$

Reflexive.

$$
R_{3}=\{(a, b) \mid a \leq b\},
$$

Reflexive.

Reflexivity and Irreflexivity

A relation R on A is irreflexive if for every element $a \in A,(a, a) \notin R$.

Note: "irreflexive" \neq "not reflexive".
e.g. If $A=\{1,2\}, R=\{(1,2),(2,1),(1,1)\}$ is not reflexive because $(2,2) \notin R$, not irrflexive because $(1,1) \in R$.

Example

Not Reflexive and Not Irreflexive

Examples

Irreflexive
Reflexive

2. Symmetry and Antisymmetry

- A binary relation R on A is symmetric if

$$
(a, b) \in R \leftrightarrow(b, a) \in R, \text { where } a, b \in A
$$

- A binary relation R on A is antisymmetric if

$$
(a, b) \in R \rightarrow(b, a) \notin R .
$$

That is, if $(a, b) \in R \wedge(b, a) \in R \rightarrow a=b$.

Examples

Consider these relations on the set of integers:

$$
R_{1}=\{(a, b) \mid a=b\}
$$

Symmetric, antisymmetric.

$$
R_{2}=\{(a, b) \mid a>b\},
$$

Not symmetric, antisymmetric.

$$
R_{3}=\{(a, b) \mid a=b+1\},
$$

Not symmetric, antisymmetric.

Examples

Let $A=\{1,2,3\}$.

$$
R_{1}=\{(1,2),(2,2),(3,1),(1,3)\}
$$

Not reflexive, not irreflexive, not symmetric, not antisymmetric

$$
R_{2}=\{(2,2),(1,3),(3,2)\}
$$

Not reflexive, not irreflexive, not symmetric, antisymmetric

$$
R_{3}=\{(1,1),(2,2),(3,3)\}
$$

Reflexive, not irreflexive, symmetric, antisymmetric

$$
R_{4}=\{(2,3)\}
$$

Not reflexive, irreflexive, not symmetric, antisymmetric

3. Transitivity

- A relation R is said to be transitive if and only if (for all a, b, c),

$$
(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R
$$

e.g. Let $A=\{1,2\}$.
$R_{1}=\{(1,1),(1,2),(2,1),(2,2)\}$ is transitive.
$R_{2}=\{(1,1),(1,2),(2,1)\}$ is not transitive, $(2,2) \notin R_{2}$.
$R_{3}=\{(3,4)\}$ is transitive.

Combining Relations

$$
\begin{aligned}
& \text { Let } A=\{1,2,3\}, B=\{1,2,3,4\}, \\
& R_{1}=\{(1,1),(2,2),(3,3)\}, \\
& R_{2}=\{(1,1),(1,2),(1,3),(1,4)\}, \text { then } \\
& R_{1} \cup R_{2}=\{(1,1),(2,2),(3,3),(1,2),(1,3),(1,4)\} \\
& R_{1} \cap R_{2}=\{(1,1)\} \\
& R_{1}-R_{2}=\{(2,2),(3,3)\}
\end{aligned}
$$

Composite Relations

- If (a, c) is in R_{1} and (c, b) is in R_{2} then (a, b) is in $R_{2}{ }^{\circ} R_{1}$.
e.g. R is the relation from $\{1,2,3\}$ to $\{1,2,3,4\}$

$$
R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\} .
$$

S is the relation from $\{1,2,3,4\}$ to $\{0,1,2\}$

$$
\begin{gathered}
S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\} . \\
S \circ R=\{(1,0),(1,1),(2,1),(2,2),(3,0),(3,1)\} .
\end{gathered}
$$

8.3 Representing Relations

- Some special ways to represent binary relations:
- With a zero-one matrix.
- With a directed graph.

Using Zero-One Matrices

To represent a relation R by a matrix $M_{R}=\left[m_{i j}\right]$, let $m_{i j}=1$ if $\left(a_{i}, b_{j}\right) \in R$, otherwise 0 .

Let $A=\{1,2,3\}, B=\{1,2\}, R: A \rightarrow B$ such that: $R=\{(2,1),(3,1),(3,2)\}$ then the matrix for R is:
1
1
2
2
2 $\left[\begin{array}{ll}0 & 2 \\ 1 & 0 \\ 1 & 1\end{array}\right]$

$$
M_{R}=\left[\begin{array}{ll}
\mathrm{O} & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]
$$

Zero-One Reflexive, Symmetric

The terms: Reflexive, non-reflexive, irreflexive, symmetric and antisymmetric.

- These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Example

Is R reflexive, symmetric, antisymmetric?

$$
M_{R}=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

Reflexive, symmetric, not antisymmetric

Operations

1- Union and the Intersection

The Boolean Operations join \vee and meet \wedge can be used to find the matrices representing the union and the intersection of two relations

$$
\begin{aligned}
& M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}} \\
& M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}
\end{aligned}
$$

Example

Suppose R_{1} and R_{2} are relations on a set A which are represented by the matrices:

$$
\begin{aligned}
& M_{R_{1}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { and } M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& M_{R_{1} \cup R_{2}}=M_{R_{1}} \vee M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right], \\
& M_{R_{1} \cap R_{2}}=M_{R_{1}} \wedge M_{R_{2}}=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Operations

2- Composite
Suppose that $R: A \leftrightarrow B, S: B \leftrightarrow C$ (Boolean Product)

$$
M_{S \circ R}=M_{R} \Theta M_{S}
$$

Example

Let

$$
M_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { and } M_{S}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Find the matrix of $S \circ R$?

$$
M_{S \circ R}=M_{R} \Theta M_{S}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Using Directed Graphs

Reflexive (bcz: $(1,1),(2,3),(3,3) \in R)$
Symmetric ($(2,3),(3,2) R,(1,3),(3,1) \in R)$
Not Ant symmetric ((2,3),(3,2) \in R)
Not Transitive ($(1,3),(3,2) \in \mathrm{R}$ but $(1,2) \in \mathrm{R})$

Digraph Reflexive, Symmetric

It is extremely easy to recognize the reflexive, irreflexive, symmetric, antisymmetric properties by graph inspection.

Reflexive:
Every node has a self-loop links to itself Not symmetric, non-antisymmetric

Symmetric:
Every link is bidirectional

Antisymmetric:
No link is
bidirectional

Non-reflexive, non-irreflexive

